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1.   INTRODUCTION 

Over the centuries, people from various parts of the world have established formulas to calculate the sum of positive 

integer powers of the first n  positive integers.  Some of the most noteworthy of these formulas are cataloged and 

discussed in [1], [2], [3], [4], and [5].  Blaise Pascal, Jacob Bernoulli, and Johann Faulhaber developed explicit 

polynomial formulas in the 17
th
 century [3].   

More recently, in April 2017, one of the authors attended a talk [6] at which formulas involving matrices, Stirling 

numbers, and Bernoulli numbers were presented for the sum of positive integer powers of the first n  positive integers. 

In this article, we introduce a recursive algorithm that employs definite integration to derive formulas for the sum of 

positive integer powers of the first n  positive integers.  The method presented here is recursive in the sense that for each 

0, 1, 2,k  , the formula for the sum of the  
st

1k   powers of the first n  positive integers is obtained from 

the formula for the sum of the 
thk  powers of the first n  positive integers. 

2.   THE ALGORITHM AND ITS PROOF 

Algorithm:  Let k  be a fixed nonnegative integer, and suppose that 

1 2 3 ( )k k k k

kn p n     ,   where n  is a positive integer and ( )kp n  is a  

polynomial function of n .  Then, to obtain a polynomial function of n , 1 ( )kp n , such that    

1 1 1 1

11 2 3 ( )k k k k

kn p n   

      ,   Step 1 is to compute the value of the  

definite integral    
0

1 ( )
n

kk p x C dx       
0

1 ( )
n

kk p x dx C n   ,   where C   

is a constant.  Step 2 is to determine the value of C  by substituting 1  for n  in the equation   

1 1 1 11 2 3k k k kn        
0

1 ( )
n

kk p x dx C n   .   Then,    
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1 ( )kp n
   

0
1 ( )

n

kk p x dx C n   ,   with C  replaced by its value. 

 

Note, in particular, that when  1n  ,  the equation  

1 1 1 11 2 3k k k kn        
0

1 ( )
n

kk p x dx C n         reduces to  

 
1

0
1 1 ( )kk p x dx C   ,       so        

1

0
1 ( ) 1kk p x dx C   . 

Before we prove the algorithm, we first state and prove the following lemma. 

 

Lemma:     
1

1 ( )
n

k
n

k p x dx


     1
k

n C    

 

Proof of Lemma:          
1

1 ( )
n

k
n

k p x dx


   

 

                      
0

1 ( 1) ( )
n

k kk p x p x dx         
1

0
1 ( )kk p x dx    

                      

                        
0

1 1
n k

k x dx      
1

0
1 ( )kk p x dx    

                                           

                        
1

1 1 1
k

n C


      

                                                        

                      
1

1
k

n C


    

 

Note that in the above proof, we used the fact that if two polynomials agree at all positive integers, then they agree at all 

real numbers, as well. 

 

Proof of Algorithm:  The proof is by induction on n .  Let k  be a fixed nonnegative integer.   

If  1n  ,  then the equation    

1 1 1 11 2 3k k k kn        
0

1 ( )
n

kk p x C dx          

reduces to   1 1 ,   since    
1

0
1 ( ) 1kk p x dx C   .    Now, suppose that for any  

positive integer n , we have   

1 1 1 11 2 3k k k kn        
0

1 ( )
n

kk p x C dx      .    Then, observe that  

 

 
11 1 1 11 2 3 1

kk k k kn n
              

 

   
1

0
1 ( ) 1 ( )

n n

k k
n

k p x C dx k p x dx C


               (by the Lemma) 
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   
1

0
1 ( ) 1 ( )

n n

k k
n

k p x dx C n k p x dx C


        

 

 
1

0
1 ( )

n

kk p x dx C n C


     

 

 
1

0
1 ( )

n

kk p x C dx


      . 

3.   CONCLUSION 

We conclude this article with some examples to demonstrate how the algorithm is applied.   

Example 1:  Let’s derive the right-hand side of the formula for    

1 1 1 11 2 3 n       from the formula   
0 0 0 01 2 3 n n     .   Since  

0k   and the right-hand side of the above equation is n , we have  0 ( )p n n ,  so  0 ( )p x x .   

First, we integrate   0 1 x C     with respect to x  from  0x    to  x n :   

 
2

0
1

02

n nx
x C dx C x

 
    

 
     

2

2

n
C n   . 

Then, to find the value of the constant C , we substitute 1  for n  in the equation 

1 1 1 11 2 3 n       

2

2

n
C n        to obtain      

21
1 1

2
C   ,      so     

1

2
C   .   Hence,   

2
1 1 1 11 2 3

2

n n
n


       .     

Incidentally, since C  is a constant and the equation    

1 1 1 11 2 3 n       

2

2

n
C n     holds for all positive integer values of n , we can  

substitute any positive integer value for n  in this equation to solve for C , not just 1 . 

 

Example 2:  Now, let’s derive the right-hand side of the formula for     

2 2 2 21 2 3 n       from the formula   

2
1 1 1 11 2 3

2

n n
n


     .  

Since 1k   and the right-hand side of the above equation is  

2

2

n n
,  we have 

2

1 ( )
2

n n
p n


 ,      so      

2

1 ( )
2

x x
p x


  .   We first integrate   

2

1 1
2

x x
C


      

with respect to x  from  0x    to  x n : 

2 3 2

0
2

02 3 2

n nx x x x
C dx C x

    
        
    

     

3 2

3 2

n n
C n    . 
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Then, we evaluate C  by substituting 1  for n  in the equation 

2 2 2 21 2 3 n       

3 2

3 2

n n
C n   ,    yielding    

3 21 1
1 1

3 2
C    ,      so      

1

6
C  . 

Consequently,    
2 2 2 21 2 3 n       

3 2

3 2 6

n n n
     

3 22 3

6

n n n 
  . 

The reader is encouraged to verify the veracity of the recursive algorithm presented in this article for larger values of k .  

The formulas for the sum of the 
thk  powers of the first n  positive integers, for each 1, 2, , 10k  ,  are listed at 

[7]. 
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